Series collection
- from
- 1988=NA
- to
- 2006=10,000
- min:
- 2,300
- max:
- 15,000
- avg:
- 8,660
- σ:
- 5,163.565
- from
- 1988=NA
- to
- 1989=0.25
- min:
- 0.25
- max:
- 0.25
- avg:
- 0.25
- σ:
- 0
Series code | 1989 | 2000 | 2001 | 2003 | 2006 |
---|---|---|---|---|---|
[impot_revenu.calcul_reductions_impots.accueil_dans_etablissement_personnes_agees.plafond] | 13000 | 15000 | 2300 | 3000 | 10000 |
[impot_revenu.calcul_reductions_impots.accueil_dans_etablissement_personnes_agees.taux] | 0.25 | - | - | - | - |
This Python snippet uses the DBnomics Python client to download the series of your cart and plot each of them with a line chart.
This is a starting point that you can customize. Plotly is used here, however any other chart library can be used.
You can start by copying it to a Jupyter Notebook , for example.
If you add series to your cart, you will need to copy-paste the new lines of the source code.
import plotly.express as px
import pandas as pd
from dbnomics import fetch_series
dfs = []
# Plafond de la réductions d'impôt pour dépenses d'accueil dans établissement pour les personnes âgées
df1 = fetch_series("IPP/taxbenefit_tables/impot_revenu.calcul_reductions_impots.accueil_dans_etablissement_personnes_agees.plafond")
df1["series_id"] = df1[["provider_code", "dataset_code", "series_code"]].agg('/'.join, axis=1)
dfs.append(df1)
# display(df1)
display(px.line(df1, x="period", y="value", title=df1.series_id[0]))
# Taux de la réductions d'impôt pour dépenses d'accueil dans établissement pour les personnes âgées
df2 = fetch_series("IPP/taxbenefit_tables/impot_revenu.calcul_reductions_impots.accueil_dans_etablissement_personnes_agees.taux")
df2["series_id"] = df2[["provider_code", "dataset_code", "series_code"]].agg('/'.join, axis=1)
dfs.append(df2)
# display(df2)
display(px.line(df2, x="period", y="value", title=df2.series_id[0]))
df_all = pd.concat(dfs)
fig = px.line(df_all, x="period", y="value", color="series_code", title="All the cart")
fig.update_layout(legend={"xanchor": "right", "yanchor": "bottom"})
fig.show()