Series collection
- from
- 1990=0.34
- to
- 2020=0.763
- min:
- 0.301
- max:
- 0.969
- avg:
- 0.57
- σ:
- 0.23
Series code | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[tarifs_energie.prix_fioul_domestique.prix_annuel_moyen_fioul_domestique_ttc_livraisons_2000_4999_litres_en_euro_par_litre] | 0.3399 | 0.3499 | 0.3121 | 0.3189 | 0.3106 | 0.3047 | 0.3344 | 0.3513 | 0.3011 | 0.3285 | 0.4628 | 0.3934 | 0.3659 | 0.3896 | 0.45 | 0.5874 | 0.6487 | 0.651 | 0.8332 | 0.5756 | 0.716 | 0.8879 | 0.9688 | 0.9272 | 0.8599 | 0.7058 | 0.6376 | 0.741 | 0.912 | 0.931 | 0.763 |
This Python snippet uses the DBnomics Python client to download the series of your cart and plot each of them with a line chart.
This is a starting point that you can customize. Plotly is used here, however any other chart library can be used.
You can start by copying it to a Jupyter Notebook , for example.
If you add series to your cart, you will need to copy-paste the new lines of the source code.
import plotly.express as px
import pandas as pd
from dbnomics import fetch_series
dfs = []
# Prix annuel moyen du fioul domestique TTC - Livraisons de 2000 à 4999 litres - en euro par litre
df1 = fetch_series("IPP/taxbenefit_tables/tarifs_energie.prix_fioul_domestique.prix_annuel_moyen_fioul_domestique_ttc_livraisons_2000_4999_litres_en_euro_par_litre")
df1["series_id"] = df1[["provider_code", "dataset_code", "series_code"]].agg('/'.join, axis=1)
dfs.append(df1)
# display(df1)
display(px.line(df1, x="period", y="value", title=df1.series_id[0]))
df_all = pd.concat(dfs)
fig = px.line(df_all, x="period", y="value", color="series_code", title="All the cart")
fig.update_layout(legend={"xanchor": "right", "yanchor": "bottom"})
fig.show()